Применение распределения Парето в теории катастроф
Рассмотрим распределение Парето с и
. Сумма Sn накопленных эффектов событий с ростом n растет нелинейно как n1/a. Этот вывод можно получить следующим способом. Рассмотрим максимальный член mmax выборки x1, x2,… xn:
(1.18)
Распределение mmax выписывается следующим образом:
. (1.19)
Уравнение для медианы med mmax (медианой распределения называется такое число, что ровно в половине случаев случайная величина принимает значения меньше него и, соответственно, ровно в половине случаев - больше) имеет вид F n (x) = 0,5. Отсюда находим:
. (1.20)
Из этого выражения следует, что характерная величина максимального члена mmax, если в качестве этой величины взять медиану med mmax, растет с точностью до множителя как n1/a. Поскольку для неотрицательных величин Sn ³ mmax, то мы снова убеждаемся в том, что Sn должна возрастать с ростом n нелинейно, а именно, не медленнее, чем n1/a.
На самом деле можно доказать что для распределений неотрицательных величин с тяжелыми хвостами величины Sn и mmax имеют одинаковый порядок и, более того, математическое ожидание их отношения:
(1.21)
Это свойство распределений с тяжелыми хвостами выглядит парадоксально: сумма положительных эффектов с точностью до множителя порядка 1/ (1 - a) определяется одним, максимальным членом mmax, причем этот факт справедлив для сколь угодно больших выборок. В обычной ситуации, когда у случайной величины имеются конечные моменты, отношение Sn/mmax, естественно, стремится к бесконечности с ростом n. В этой ситуации вклад любого отдельного слагаемого (в том числе и максимального) в сумму Sn стремится к нулю.
Кроме приведенных ранее можно найти другие примеры распределений с тяжелыми хвостами. Они относятся к ущербам от ураганов и землетрясений, а также к максимальным расходам воды в реках. С большой долей уверенности можно предполагать, что распределения с тяжелыми хвостами характерны не только для потерь от природных катастроф, но также и для потерь от техногенных катастроф типа Чернобыльской аварии, разливов нефти в морях в результате аварий танкеров, аварий химических предприятий, пожаров, разрушений нефтепроводов, аварий глобальных компьютерных сетей и т.п. Этот вопрос требует дальнейшего тщательного изучения.
Ниже будет теоретически показано, что в случае распределений с тяжелыми хвостами выборочные средние неустойчивы и малоинформативны из-за неприменимости закона больших чисел. Покажем неустойчивость и слабую информативность средних значений ущерба на конкретных примерах. По данным ЮНЕСКО за 1947-1960 гг. от тайфунов, ураганов, наводнений погибло 900 тыс. чел., что за год в среднем составило 64300 жертв. Если сравнить это среднегодовое значение с числом жертв от отдельных катастроф, то оказывается, что эти последние могут быть в десятки раз больше. Так, при наводнениях в Китае в 1931 г. погибло около 1 300 тыс. чел., а в 1938 г. - 500 тыс. чел., в 1970 г. в Бангладеш жертвами наводнения стали более 500 тыс. чел. Ясно, что среднегодовые показатели не дают представления о возможности таких гигантских катастроф. О неустойчивости среднегодового значения числа жертв говорит следующий факт. По материалам каталога, подготовленного в рамках Международной программы Десятилетия борьбы со стихийными бедствиями, среднегодовое число жертв за 1962 - 1992 годы от тех же катастроф составило 36000. Уменьшение среднегодового числа жертв, по сравнению с периодом 1947-1960 гг., почти в два раза было бы большим успехом, если бы оно не носило случайного характера.